
Artificial Gravity in a Rotating Space Station—C.E. Mungan, Spring 2001

You are standing on the inner surface of a rotating cylindrical space station of radius R. You
drop a ball from height h. Does the ball land right at your feet? This is the gist of question 6 at
the end of chapter 5 of Serway.
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Let O denote the center of the cylinder and A the position at which the ball is released, at the
same instant that your feet are located at position B. As viewed from an external inertial
reference frame, no forces act on the ball after its release, and hence it travels along a straight
line a distance x until it strikes the station floor at position C. If the station is rotating at constant
angular speed ω, then the time the ball needs to travel this distance is
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Meanwhile, the time required for your feet to travel along the circular arc of length s to the same
point C is
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Comparing Eqs. (1) and (2) in radians, we conclude that t tball feet>  and hence the ball falls
behind you. Specifically, its fractional time lag is
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since cos ( ) / /θ = − = −R h R h R1 . This is independent of the angular speed of the space station



and is plotted below (bold curve) as a function of the relative height, h R/ . For (realistically)
small angles, cos /θ θ≈ −1 22  and tan /θ θ θ≈ + 3 3, so that
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This is plotted as the straight line below. On the other hand, the time lag diverges to infinity as
h R→  because in this limit the released ball has zero translational speed and hence never
reaches position C!
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A Quicktime movie of the motion of balls released from various heights can be found on John
Mallinckrodt’s web site at http://www.csupomona.edu/~ajm/special/inertial.qt.

Note that the implications of this discussion is that a ball dropped from a height h above the
Earth’s surface will also not quite fall at an observer’s feet, owing to Earth’s rotation at angular
speed ω. A complete analysis of this situation is rather complicated, but an approximate
treatment proves the point. Let’s compare the time required for the ball and your feet to travel
through the same angle θ about Earth’s center. As above, your feet require a time described by
Eq. (2). In contrast, the ball’s angular speed increases as it falls in order to conserve angular
momentum,
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since r rball i i
2 2ω ω= =constant . In principle, this can be solved numerically by invoking

conservation of mechanical energy, as given in the Appendix. However, a quick approximation
is to replace r in the integral by its average value r . If the ball hits the ground after traveling
through angle θ, then r r r R hi f≈ + = +( ) / ( / )2 2  assuming h R<< , and therefore
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Now the ball lands ahead of you and your feet lag by a fractional time comparable to Eq. (4).

http://www.csupomona.edu/~ajm/special/inertial.qt


Appendix—Integral Solution near Earth’s Surface

Conservation of mechanical energy, E, for the ball of mass m is
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where M is the mass of the Earth. The angular and radial components of the ball’s velocity are
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from conservation of angular momentum, L, and
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using Eq. (8) in the last step. Substituting Eqs. (8) and (9) into (7) gives after some algebra,
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where the negative square root was chosen (since dr < 0 while the ball falls) and where I defined
the dimensionless variables x R h r≡ +( ) /  and
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with g = 9 80.  m / s2, T = 24 hours, and R = 6370 km. Substituting Eq. (10) into (2) gives
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whereas substitution of Eq. (10) into (5) results in
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An approximate solution to this last equation is
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Putting x x x h Ri f≈ + = +( ) / /2 1 2  gives Eq. (6) to linear order in the relative height. A more
exact solution to Eqs. (12) and (13) can be obtained either numerically (given h) or from
integration tables. For example, Eq. (12) can be considerably simplified by transforming
variables to y x≡ −1, while a solution to Eq. (13) is probably known from orbit theory.


